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Abstract-An analysis is presented for the problem of a rigid/viscoplastic infinite plate subjected to normal
projectile impact. The solution is first obtained in Laplace transform space for the finite clamped plate and then
limiting conditions and numerical inversion methods are used to get the solution for the infinite plate in the
time domain. The results are compared with experimental data for projectile impact on mild steel and aluminum
alloy plates. The theory presents a useful analytical method for the evaluation of the response of large plates
composed of strain rate dependent material subjected to projectile impact.

INTRODUCTION

THIS paper presents a solution to a problem in the area of projectile impact on thin plates
using the theory of rate sensitive plasticity as a model for the response of the plate material.
Problems of the dynamic plastic behavior of structures are of considerable technical
importance but analytical solutions are confined largely to very simple physical situations
such as circular plates symmetrically loaded, and generally within the framework of
the theory of rate independent rigid plastic materials. Thus Hopkins [1] treated the motion
of a rigid perfectly plastic plate of material obeying the Tresca yield condition and flow
rule subject to an accelerative velocity, imposed on the plate by a rigid cylindrical punch.
No dynamic interaction between projectile and plate occurred in this problem since the
motion of the punch was specified a priori. Chulay [2] studied the problem of a concen­
trated dynamic load on a rigid perfectly plastic plate exhibiting a piecewise linear yield
condition and using a single propagating yield hinge in the model. A solution was found
only for the case of constant transverse velocity and solutions for other types of loading
or for work-hardening materials were found not to exist within the limitations of this
model.
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A fairly large number of studies involving plates subjected to impulsive loading as
opposed to projectile impact has been published, again within the framework of rigid
perfectly plastic material behavior. The simply supported plate subject to an ideal impulse
and to a rectangular pulse was examined by Wang [3] and by Hopkins and Prager [4],
respectively. Florence has obtained the response of a clamped plate to a rectangular
pulse over the entire surface (Florence [5]) and over a central region (Florence [6]). In
all of the above cases a Tresca yield condition was assumed.

Experimental studies corresponding to the above theoretical analyses provide results
which are considerably different from the theoretical predictions (see, for example, Florence
[7]) the differences generally being attributed to the effects of membrane forces which are
neglected in the analyses. However, all these solutions were based on the assumption
that the yield stress of the material was independent of strain rate. The plastic behavior
of most metals is sensitive to strain rate, mild steel particularly so; aluminum, although
less so, is also subject to rate effects. Furthermore, the flow rule associated with the Tresca
yield condition leads to velocity fields which are unrealistic as a result of the piecewise
constant direction required of the strain rate vector. In a recent paper Wierzbicki and
Florence [8] have shown that the differences between theory and experiment can be
significantly reduced by inclusion of rate effects in the lower strain rate regime, whereas
in the high strain rate domain membrane effects appear to have a stronger influence.

In the present paper the behavior of the plate is analyzed on the basis of a rigid visco­
plastic material obeying a quasi-static yield condition of the von Mises type and its
associated flow rule, and uses the method of linearization by Kelly and Wierzbicki [9J to
obtain a solution to the problem of projectile impact on a clamped circular plate for the
same viscoplastic material model and yield condition. This solution incorporated the
dynamic interaction of the projectile and the plate, the impact force not being specified
in advance but being part of the solution. The resulting displacement of the plate was
presented in the form of an infinite sum of eigenfunctions. This solution was applied to an
experimental study by Kelly and Wilshaw [10] and it was found that the series converged
rapidly and very few terms were needed to give results in good accord with the experi­
mental data. However, the plates used in [10] were fairly thick plates having a diameter
to thickness ratio in the range 10-25. In the present case when this solution was used to
predict plate deformations it was found that the convergence of the series was extremely
slow and an improved solution was needed. The reason for the slow convergence of the
series was the very large diameter to thickness ratio of the plate and the fact that the
boundary of the plate was so distant from the point of impact that it did not influence
the plastic behavior which was localized near the point of impact. Thus it was felt to be
useful to develop, as an alternative to the method proposed in [9], a method of solution
which would have special applicability to plates of large diameter to thickness ratio and
this solution is presented in this paper. The solution obtained here is strictly valid only
for circular plates of infinite radius but it is clear from both theoretical and experimental
results that plastic deformation does not develop near the edges of the plates. This was
verified by showing that the plastic deformation of a four foot square plate was identical
to that of a 15 in. diameter circular plate of the same thickness and subject to the same
impact. A comparison of the terminal displacement profiles of a 14! in. diameter clamped
plate and a 4 x 4 ft freely-suspended plate, both composed of 2024-0 aluminum and
0·050 in. thick, struck by a t in. diameter steel sphere at velocities of 396 and 397 ft/sec
is shown in Fig. 1 and attests to the validity of this hypothesis.
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FIG. 1. Terminal displacement profiles of a I4.\: in. diameter clamped plate and a 4 x 4 ft freely-suspended
plate, both composed of 2024-0 aluminum and 0·050 in. thick when struck by a ! in. diameter steel

sphere.

The solution presented here supplements that obtained in [9] and does not duplicate it.
In fact by an obvious procedure the two can be combined to provide solutions which are
convenient in computation over the entire range of diameter to thickness ratios.

THEORETICAL CONSIDERATIONS

(i) Viscoplastic stress strain relations

The uniaxial behavior of a viscoplastic material may be approximately represented
by a relationship between stress (J and plastic strain rate Bof the form

(1)

where (Jo is the static yield stress in simple tension and l/y is the viscoplastic relaxation
time of the material.

Generalizations of equation (1) to non-uniaxial stress have been considered by a
number of authors; in particular Perzyna [11] and Craggs [12] from different basic pre­
mises have obtained several forms of multiaxial stress strain relation. The simplest form
which reduces to equation (1) for uniaxial loading, and which will be used here is

(2)

applicable when tSklSkl ~ P. In equation (2) Bij is the strain rate tensor and Sij the stress
deviator, l/y is as before the relaxation time and k = (Jo/-./3 the static yield stress in simple
shear. The material is taken as incompressible for plastic deformations and the elastic
deformations are neglected.
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The physical basis of equation (2) is the assumption that the material obeys the von
Mises criterion

and its associated flow rule for static deformations and an expanded von Mises yield condi­
tion and associated flow rule for dynamic deformations, and further the viscosity of the
material requires that the strain rate depend on the difference between the expanded and
the static yield condition. The expansion ofthe yield condition at any time and any location
in the body is given by squaring both sides of equation (2) leading to

(tsijsij)t = k[1+~(teiJ.eij)t]

The flow rule asserts that the strain rate should be normal to the yield surface at any time.
In the nine-dimensional space of the stress deviator the yield condition is a hypersphere
and the requirement of the flow rule is met by noting that sij/(sklskl)t is a radial unit vector
in this space.

(ii) Governing equations of thin plate theory

In setting up the governing equations of the viscoplastic plate all quantities are assumed
to be functions only of r the distance measured from the plate center and of the time t.
The surface tractions p or Po are taken positive in the direction of positive transverse
displacements of the middle surface. The velocity of points of the middle surface is v(r, t).
The plate radius is R, the thickness is 2h and the mass density per unit of area of the middle
surface is J1..

The constitutive relations of equation (2) when written in terms of the radial and cir­
cumferential moments Mr and M.; and the corresponding curvature rates kr and k.; take
the form (see for example [13])

. .j3y (
k r = 2h 1

. .j3Y(
k.; = 2h 1

M o )2Mr-M.;
.j(M;-MrM.;+M~) M o

M o )2M.;-Mr
.j(M;-MrM",+M~) M o

where Mo = C1oh2
•

The kinematics of the deformation require that the rates of curvature kr and k", be related
to the velocity v through

kr = -V'rr; k", = -v'rlr (3)

Following the method described in [9] we linearize the constitutive relations by assum­
ing that the stress trajectory in the nine dimensional space of the stress deviator of any
particle is a straight line. Thus the quantity Su!(SkISkl)t = const. and the stress strain rate
relation becomes

(4)

where sij is the state of stress on the surface tSijSij = k2
• This condition is satisfied strictly
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only at the center of the plate where kr = k", and at the edge of the plate but deviations
from the straight line may be small at intermediate points. The equations relating moments
and curvature rates corresponding to (4) are

. .J3y ",,17 -
kr = ----u:;(2Mr - M", - (L.LYl r - M"'))/M 0

k .J~ - -'" = 2iI(2M",-Mr-(2M",-Mr))/Mo

where now M r and M", are moments satisfying the initial yield condition M;-MrM",+
M 2 - M 2

'" - o·
Using the above relations and equation (3) the governing equation ofthe plate velocity v

is

4 3.J3Y{1 M - }V v = 4hM
o

-;:[(r r)"-M,,,],,+P-Ji.V'1

The pressure P in this case is zero except of the region of contact of the plate and the pro­
jectile and given by

2nfpr dr = - mV,tlr = 0

where m is the mass of the projectile.
The quantity

1 - ­
--[(rMr)'r - M",]'r

r

is a pressure distribution and corresponds to that at the static collapse condition of a
rigid perfectly plastic plate obeying the von Mises yield condition. We denote the static
pressure distribution corresponding to the dynamic loading P by Po. In this case P is a
concentrated point load at r = 0 and Po is a concentrated point load ofmagnitude 4nMo/.J3.
The impacting mass in this case is taken to be rigid, of negligible radius and travelling
with velocity V;.

The governing partial differential equation for the clamped viscoplastic plate subjected
to central projectile impact based on small deflections and bending action only is thus

4 3.J3yJi.
V v+ 4hM0 V,t = 0

subject to initial conditions

v(0,0) = V;;

and boundary conditions

v(R, t) = 0,

and

v(r,O) = 0,

v,,(R, t) = 0

. 4hMo 2 4nMo I
hm 2nr 3 /3 (V v)'r = -----r-3 - mv"
r .... O y y y r=O

where v is the plate velocity and a comma indicates differentiation with respect to the
subscript variable.
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(iii) Solution in transform space

The resulting equations in Laplace transform space can then be written as

V 4 v(r, s)+et4 sv(r, s) = 0 (5)

subject to

and

v(R, s) = 0, v'r(R, s) = 0 (6)

where

4 3J3yf.l
oc = ---

4hMo '

lim 2nr(V2v(r, s»'r = - Q(s)
r-O

- et
4 [P ]Q(s) = - -+m(sv(O,s)-lj)

j.J. s
and P

_ ~nMo

- J3

(7)

(9)

The barred quantities are the Laplace transformed variables.
The solution of equation (5) can be written in terms of Kelvin functions [14J, as

iI(r, s) A(s) ber(ocstr) + B(s) bei(ocstr) + C(s) ker(ocstr) + D(s) kei(ocstr) (8)

where the parameters A, B, C and D are determined from the boundary conditions. Now
in the limit as x -+ 0, the behavior of the Kelvin functions is ber x -+ 1, bei x -+ 0, ker
x -+ - 00 and kei x -+ -n/4. Therefore, requiring boundedness on iI(r, s) as r -+ °implies
that C(s) must vanish.

In dealing with the boundary condition given by equation (7), it is noted that in the
limit as x -+ 0, the behavior of the derivatives of the Kelvin functions is ber'x, ber"x,
ber"'x, -+ 0; bei'x, bei"'x -+ 0; but bei"x -+ t and the derivatives ofkei x also do not vanish
in the limit. Therefore, in evaluating equation (7) for the limiting case it is necessary just
to consider the kei terms and their derivatives and terms containing beil/x.

Letting q = etSt , the following relations for the derivatives of the necessary Kelvin
functions can be established:

kei(qr)'r = q kei'(qr)

. (kei'(qr) )ket(qr)'rr = q2 --q,:-+ker(qr)

kei(qr)"rr = q3(ker'(qr) + ; 2 keil(qr)-~ker(qr»
q r qr

bei(qr),rr = q2 beil/(qr)

Substituting into the derivative of the Laplacian occurring in equation (7) and cancelling
like terms gives

1
rV'rrr + V", - ~v'r = B(S)q2 bei"(qr) + D(s)q2(qr) ker'(qr)

r

Now as x -+ 0, ker'x approaches - 2/x ber x and ber x approaches 1. Therefore lim (qr)
ker'(qr) = - 2. Also, as previously noted, bei"(qr) approaches! as (qr) -+ O. Thus,

. (- - _~-)_1 2-1_ 2-1hm rV"rr +VlYr V'r - ];B(s)oc s 2D(s)oc s
r-O r
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so that equation (7) becomes

B(s) . 1toe2st - D(s). 41toe2st = - (2(s)

The two boundary conditions of equation (6) give

A(s) ber(oes*R) + B(s) bei(oes*R) + D(s) kei(oes*R) = °
A(s) ber'(oes*R) + B(s) bei'(oes*R) + D(s) kei'(oes*R) = °
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(10)

(11)

(12)

The three equations (10HI2) can be solved simultaneously for the coefficients A(s), B(s)
and D(s). Thus, the transform solution is given by equation (8) with C(s) = °and the
remaining coefficients known. The analytical inversion of this transform solution for the
clamped finite plate does not appear to be feasible. However, if R becomes very large,
asymptotic results for the Kelvin functions may be employed to derive a solution for the
infinite plate.

The asymptotic expansions ofthe Kelvin functions for large arguments, [14], show that
the Kelvin functions for x ~ 00 behave as

ex/../
2 (x 1t)

ber x '" -./(21tx) cos -./2 - g

ex
/../

2 (x 1t)
bei x '" -./(21tx) sin -./2 - g

kei x'"J(;x) e-
x

/../
2

sin(j2 +i)

ex
/../

2 (x 1t)
ber' x '" -./(21tx) cos -./2 +g

ex
/../

2 (x 1t)
bei' x '" -./(21tx) sin -./2 +g

kei' x'"J(21t
X) e-

x
/../

2
sin (;2 - i)

Using these expansions to determine the behavior of A(s), B(s) and D(s) as R -+ 00, it is
found that

A(s) -+ 0, B(s) -+ 0,

Therefore, the transform solution for the infinite plate is

_ (2(s).
v(r, s) = -42 t kel(oes*r)

1toe s
(13)

Now recall that (2(s) contains a v(O, s) term. As r ~ 0, the solution of equation (13) for
v(O, s), noting that kei(O) = - (1t/4), is

V P/m
v(O, s) = st(b~st) s. st(b+st ) (14)

where

Substituting this result back into equation (13) gives the complete viscoplastic transformed
solution for projectile impact on an infinite plate as

- -4[ P/m V; ] . *v(r, s) - - t(b t) - t(b t) kel(oes r)1t S. S +s s +s
(15)
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Although the possibility of obtaining an inverse in closed form appears to be remote, a
numerical inversion based on a scheme developed by Dubner and Abate [15J was obtained
at points away from r = O.

An analytical solution at r = 0 is easily obtained by inverting equation (14), yielding

(16)

Integrating this result gives the displacement-time relation at the center of the plate as

(
P ) [1 1>2, t 2( t) t 1] . P 4P t

w(O, t) = V;- mb1 b2 e erfc(bt )+b; - b2 +mb2 t 3mbJ1/

Similarly, differentiation of equation (16) gives the plate deceleration with time as

(17)

(18)

This last result indicates an infinite deceleration at the instant of impact. It appears that
the reason for this is inherent in the choice of a rigid/viscoplastic material model and the
requirement of an instantaneous velocity rise of v = V; at the plate center upon impact. In
reality, because of Hertz contact and indentation effects, there is a rise time associated with
the plate center reaching the velocity ofthe projectile. The viscoplastic theory is also singular
in that it does not reduce exactly to the rigid/plastic theory for y -+ 00, corresponding to no
strain rate sensitivity.

Because of the use in the solution ofa constant collapse load P, the velocity relation will
continue to decrease monotonously with increasing time. However, the result has physical
meaning only up to the time when the central plate velocity has reached zero. The time, tf'
at which this occurs is determined from the relation obtained by setting v(O, tf) = 0 in
equation (16):

(19)

DISCUSSION

The variation of the permanent central deflection of the plates with impact velocity as
predicted by the viscoplastic theory and as observed is presented in Figs. 2 and 3 for 2024-0
aluminum and mild steel, respectively. A value of y = 1000 sec- 1 was used for the aluminum
which is only slightly strain-rate sensitive. Values of y of 400, 100 and 50 sec- 1 were em­
ployed in the calculation for the mild steel plates; the first of these values having been
deduced from experimental results on a similar mild steel by Kelly and Wilshaw [10].
Furthermore, the value of M 0 employed in the present calculations for the latter material
was not derived from the value of the measured static yield stress. It is well known that the
dynamic yield stress for mild steel is a highly non-linear function of strain rate and rises
rapidly with this parameter in the range 0 ::;; B ::;; 10 sec-I, but much more slowly above a
value of 100 sec-I. The work of a number of authors concerned with this topic has been
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FIG. 2. Comparison of viscoplastic infinite plate theory with experimental results for projectile impact
on a 2024-0 aluminum plate (Ref. [17]).

compiled by Symonds [16] and a representative stress-strain rate curve using this informa­
tion has been published by Wierzbicki and Florence [8]. From the strain histories presented
in Ref. [7], it was estimated that the average strain rate of the initial transient in the case
of the steel plates was in the range from 100 to 200 sec- 1• For this region, the tangent to
the stress-strain rate curve intersects the stress axis, where 6 = 0, at a magnitude of about
twice the true static yield stress, and the vall;le of M0 employed was based on this stress.

The permanent central deflection is overpredicted by the viscoplastic theory in the case
of the aluminum targets. However, the predictions of the viscoplastic theory are in reason­
able agreement with the permanent deflections of the steel plates, particularly in the lower
velocity regime where strain rates are small, but their effects significant. Any discrepancies
between analysis and experimental data is mainly attributable to the neglect of membrane
action, particularly at the higher strain rates, as was also concluded in Ref. [8]. However,
the method developed here represents a very useful tool for the analysis of large plates of a
highly strain-rate dependent material such as mild steel at low and intermediate impact
velocities.
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FIG. 3. Comparison of viscoplastic infinite plate theory with experimental results for projectile impact
on a mild steel plate (Ref. [17]).
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A6CTpaKT-npHBOJ\HTCli aHaJIlI3 J\JllI 3aJ\a'lH 6eCKOHe'lHOH lKeCTKO B1I3KoynpyroH nJiaCTHHKH, nOJ\Bep­
lKeHHOH J\CHCTBHIO rrepncHJ\HKyJlllpHoro YJ\apa CHapllJ\OM. Bo rrepBblX rrOJlY'laCTClI peweHHe BnpoCTpaHcTBe
npc06pa30BaHHlI JIanJIaca, J\JllI KOHC'IHOH 3all.\CMJleHHOH nJIaCTHHKH. 3aTcM, nyTeM OrpaHH'IeHHlI YCJlOBHH
H HcnOJlb3Yll '1HCJlCHHbIe MeTOJ\bI HHBepCHH, nOJlY'laeTCli peWCHHe J\JllI 6ecKoHe'lHOH nJiaCTHHKH B 06JIaCTH
BpCMCHH. PC3YJlbTaTbI cpaBHHBaIOTcli c 3KcnepHMCHTaJIbHbIMH J\aHHbIMH, J\JIlI YJ\apa CHapllJ\a B nJIaCTHHKy
H3 MlirKOH CTaJiH H aJlJlIOMHHHCBoro CnJIaBa. TCOPHII rrpcJ\cTaBJIlieT c0601l nOJle3HbIlI aHaJlHTH'IcCKHlI
MCTOJ\ J\JllI onpeJ\eJleHHlI nOBeJ\CHHlI 60HBMI.\X nJiaCTHHOK, H3rOTOBJleHHbIX H3 MaTepHaJIa, 3aBHCHMoro OT
CKOpOCTH J\ccjJopMaI.\HH, nOJ\BeplKeHHblX YJ\apy CHaplljlOM.


